early intervention

Direct hospital costs to achieve union in tibia fractures have been estimated between $7,415 and $27,422 (indexed to 2002 dollars). The IGNITE™ technique is a Low Morbidity, Time-saving procedure:

- Estimated cost-savings potential of over $4,400.
- Minimally Invasive Aspiration and Injection.
- Outpatient, 30-minutes OR time.
- No iliac crest harvest complications and cost (estimated between $2,200 and $5,000).

REFERENCES

4. No indirect costs were included in this calculation, such as workers’ compensation, disability, and other non-hospital costs. Cost savings using IGNITE™ technique estimated using more conservative direct hospital cost ($7,415).
7. Sawin PD, Traynes VC, Menezes AH. A comparative analysis of fusion rates and donor site morbidity for autogenic rib and iliac crest bone grafts in posterior fusions.
The IGNITE™ Power Mix combines an injectable cellular scaffold in demineralized bone matrix with aspirated red bone marrow. The combination provides a minimally invasive graft with osteoconductive, osteoinductive, and osteogenic capacity.

The IGNITE™ Composite Graft reinforces and stimulates fracture healing in poorly vascularized areas, such as the long bone diaphysis. Healing with the IGNITE™ Graft proceeds via the normal stages of fracture healing.

Hematoma phase
The IGNITE™ Graft is injected to induce hematoma formation. Osteogenic stem cells are transplanted to the defect site.

Inflammatory phase
The fracture hematoma clots and elicits a transient inflammatory response. Angiogenesis is an early, critical component at this stage of healing.

Soft callus phase
Tissue becomes more organized as new bone (osteoid) is laid down.

Extra-cortical bridging and remodeling phase
Tissues continue to organize as osteoid is calcified. Remodeling completes the reparative phase as the bone is stressed.

Case Study
55 Year-Old Male

Bone marrow is a reliable source of osteogenic cells with little to no morbidity.

Pre-Injection
A sub-periosteal envelope is created to receive the IGNITE™ composite. Injection of the graft should bridge the defect to stimulate extra-cortical callus formation.

Post-op, 2 Months
Note mature callus bridging the defect site.

Post-op, 8 Months
Newly formed bone is remodeled over time.

A low morbidity, time-saving, percutaneous treatment for stable diaphyseal fractures has been advanced to include an increased level of proteins to couple with harvested osteoprogenitor cells from bone marrow. The IGNITE™ Power Mix kit features modified instrumentation affording injection of a robust graft to stimulate callus formation in problem fractures.

INDICATIONS
- Suspect delayed union at 6-8 weeks following index procedure with no sign of callus formation
- Delayed union with well-fixed hardware
- Fresh fractures for “High Risk” patients with one or more comorbidities such as smoking, diabetes, steroid use, etc.
- Stable (well-fixed) nonunions with no prior surgical intervention

CONTRAINDICATIONS
- Nonunion with previous infection at nonunion site
- Previous failed grafting for nonunion
- Bone gap greater than 3 mm
- Atrophic nonunion with significant fibrous tissue in fracture gap
- Acute open injury
- Soft tissue defects
- Unstable fracture / defects

The combination of BMP and BMP has over a decade of clinical evaluation. This large prospective clinical trial demonstrated clinical success comparable to open, autologous grafting in a series of 89 eligible nonunions.

CLINICAL COMPARISON OF AUTOGRAGFT, DBM / BMA BIOCOMPOSITE, AND OP-1™

<table>
<thead>
<tr>
<th># of patients</th>
<th>Clinical Union</th>
<th>Radiographic Union</th>
<th>Time to Union</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autograft</td>
<td>RECKLING, et al.</td>
<td>11</td>
<td>44% 98% - 5-10 months</td>
</tr>
<tr>
<td>DBM and/or BMA</td>
<td>CONNOLLY, et al.</td>
<td>14</td>
<td>90% 20% - 7 months</td>
</tr>
<tr>
<td>OP-1™ (rhBMP-7)</td>
<td>GARG, et al.</td>
<td>15</td>
<td>85% 57% 9 months</td>
</tr>
</tbody>
</table>

SUCCESS RATE BY NONUNION TYPE

- Hypertrophic: 77%
- Atrophic: 94%
- Total: 88%

TIME TO UNION

- Autograft: 21 months
- DBM and/or BMA: 8 months
- OP-1™: 6 months

Images courtesy of Ross Wilkins, MD
early intervention

Direct hospital costs to achieve union in tibia fractures have been estimated between $7415 and $27,422 (indexed to 2002 dollars). The IGNITE™ technique is a Low Morbidity, Time-saving procedure:

- Estimated cost-savings potential of over $4400.
- Minimally Invasive Aspiration and Injection
- Outpatient, 30-minutes OR time
- No iliac crest harvest complications and cost (estimated between $2,200 and $5,000)

REFERENCES
4. No indirect costs were included in this calculation, such as workers’ compensation, disability, and other non-hospital costs. Cost savings using IGNITE™ technique estimated using more conservative direct hospital cost ($7,415).
7. Sawin PD, Traynes VC, Menezes AH. A comparative analysis of fusion rates and donor site morbidity for autogenic rib and iliac crest bone grafts in posterior fusions.

IGNITE™ POWER MIX | 860T-2000 20cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-0500 5cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-1000 10cc

FOR OPEN GRAFTING OF DIFFICULT FRACTURES TRY

ORDERING INFORMATION

IGNITE™ POWER MIX | 860T-2000 20cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-0500 5cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-1000 10cc

FOR OPEN GRAFTING OF DIFFICULT FRACTURES, TRY

ORDERING INFORMATION

IGNITE™ POWER MIX | 860T-2000 20cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-0500 5cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-1000 10cc

FOR OPEN GRAFTING OF DIFFICULT FRACTURES, TRY

ORDERING INFORMATION

IGNITE™ POWER MIX | 860T-2000 20cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-0500 5cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-1000 10cc

FOR OPEN GRAFTING OF DIFFICULT FRACTURES, TRY

ORDERING INFORMATION

IGNITE™ POWER MIX | 860T-2000 20cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-0500 5cc
ALLOMATRIX® CUSTOM BONE PUTTY | 86XC-1000 10cc
The IGNITE™ Power Mix combines an injectable cellular scaffold in demineralized bone matrix with aspirated red bone marrow. The combination provides a minimally invasive graft with osteoconductive, osteoinductive, and osteogenic capacity.

The IGNITE™ Composite Graft reinforces and stimulates fracture healing in poorly vascularized areas, such as the long bone diaphysis.

Healing with the IGNITE™ Graft proceeds via the normal stages of fracture healing.

- **Hematoma phase**: The IGNITE™ Graft is injected to induce hematoma formation. Osteogenic stem cells are transplanted to the defect site.
- **Inflammatory phase**: The fracture hematoma clots and elicits a transient inflammatory response. Angiogenesis is an early, critical component at this stage of healing.
- **Soft callus phase**: Tissue becomes more organized as new bone (osteoid) is laid down.
- **Extra-cortical bridging and remodeling phase**: Tissues continue to organize as osteoid is calcified. Remodeling completes the reparative phase as the bone is stressed.

Case Study: 55 YEAR-OLD MALE

Bone marrow is a reliable source of osteogenic cells with little to no morbidity.

Pre-Injection: A sub-periosteal envelope is created to receive the IGNITE™ composite. Injection of the graft should bridge the defect to stimulate extra-cortical callus formation.

Post-op, 2 Months: Note mature callus bridging the defect site.

Post-op, 8 Months: Newly formed bone is remodeled over time.

A low morbidity, time-saving, percutaneous treatment for stable diaphyseal fractures has been advanced to include an increased level of proteins to couple with harvested osteoprogenitor cells from bone marrow.

The IGNITE™ Power Mix kit features modified instrumentation affording injection of a robust graft to stimulate callus formation in problem fractures.

INDICATIONS
- Suspect delayed union at 6-8 weeks following index procedure with no sign of callus formation
- Delayed union with well-fixed hardware
- Fresh fractures for “High Risk” patients with one or more comorbidities such as smoking, diabetes, steroid use, etc.
- Stable (well-fixed) nonunions with no prior surgical intervention

CONTRAINDICATIONS
- Nonunion with previous infection at nonunion site
- Previous failed grafting for the nonunion
- Bone gap greater than 3mm
- Abscess, infection, or significant fracture instability
- Nonunion in patients with significant bone loss
- Nonunion with failed bone grafting
- Unstable fractures / defects

Minimally-invasive technique

Targeted graft placement

To stimulate extra cortical bridging

Powerful osteogenic combination

of cells, signaling proteins and scaffold

Stimulate fracture callus formation

Enhance diaphyseal fracture healing

The combination of DBM and BMA has over a decade of clinical evaluation. This composite has demonstrated clinical success comparable to open, autologous grafting in a series of 69 stable nonunions.

Clinical Comparison of Autograft, DBM / BMA BioComposite, and OP-1™

<table>
<thead>
<tr>
<th># of patients</th>
<th>Clinical union</th>
<th>Radiographic union</th>
<th>Time to union</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autograft</td>
<td>44%</td>
<td>98%</td>
<td>5-10 months</td>
</tr>
<tr>
<td>RECKLING, et al</td>
<td>11</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Connolly, et al</td>
<td>14</td>
<td>85%</td>
<td>74%</td>
</tr>
<tr>
<td>Frieda, et al</td>
<td>61</td>
<td>85%</td>
<td>74%</td>
</tr>
<tr>
<td>Wilkins, et al</td>
<td>20</td>
<td>90%</td>
<td>- 7</td>
</tr>
<tr>
<td>Garga, et al</td>
<td>69</td>
<td>81%</td>
<td>88%</td>
</tr>
<tr>
<td>RhOP-1™ (Bmp-7)</td>
<td>10</td>
<td>85%</td>
<td>88%</td>
</tr>
</tbody>
</table>

SUCCESS RATE BY NONUNION TYPE

<table>
<thead>
<tr>
<th>Hypertrophic</th>
<th>Atrophic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>85%</td>
<td>88%</td>
</tr>
</tbody>
</table>

Promen technique

The combination of DBM and BMA has over a decade of clinical evaluation. This composite has demonstrated clinical success comparable to open, autologous grafting in a series of 69 stable nonunions.
The IGNITE™ Power Mix combines an injectable cellular scaffold in demineralized bone matrix with aspirated red bone marrow. This combination provides a minimally invasive graft with osteoconductive, osteoinductive, and osteogenic capacity. The IGNITE™ Composite Graft reinforces and stimulates fracture healing in poorly vascularized areas, such as the long bone diaphysis.

Healing with the IGNITE™ Graft proceeds via the normal stages of fracture healing.

- **Hematoma phase**: The IGNITE™ Graft is injected to induce hematoma formation. Osteogenic stem cells are transplanted to the defect site.
- **Inflammatory phase**: The fracture hematoma clots and elicits a transient inflammatory response. Angiogenesis is an early, critical component at this stage of healing.
- **Soft callus phase**: Tissue becomes more organized as new bone (osteoid) is laid down.
- **Extra-cortical bridging and remodeling phase**: Tissues continue to organize as osteoid is calcified. Remodeling completes the reparative phase as the bone is stressed.

Case Study

55 Year-Old Male

Bone marrow is a reliable source of osteogenic cells with little to no morbidity.

- **Pre-Injection**: A sub-periosteal envelope is created to receive the IGNITE™ composite. Injection of the graft should bridge the defect to stimulate extra-cortical callus formation.
- **Post-op, 2 Months**: Note mature callus bridging the defect site.
- **Post-op, 8 Months**: New bone is remodelled over time.

A low morbidity, time-saving, percutaneous treatment for stable diaphyseal fractures has been advanced to include an increased level of proteins to couple with harvested osteoprogenitor cells from bone marrow.

The IGNITE™ Power Mix kit features modified instrumentation affording injection of a robust graft to stimulate callus formation in problem fractures.

INDICATIONS

- Suspect delayed union at 6-8 weeks following index procedure with no sign of callus formation
- Delayed union with well-fixed hardware
- Fresh fractures for “High Risk” patients with one or more comorbidities such as smoking, diabetes, steroid use, etc.
- Stable (well-fixed) nonunions with no prior surgical intervention

CONTRAINDICATIONS

- Nonunion with previous infection at nonunion site
- Previous failed grafting for the nonunion
- Bone gap greater than twice the width
- Acute fracture with significant bone loss
- Non-union issues in fracture gap
- Sign of hardware loosening
- Unstable fractures / defects

Beneficial osteogenic combination

- of donor cells, signaling proteins, and scaffold

INDICATIONS

- Stimulate fracture callus formation
- Enhance diaphyseal fracture healing

CONTRAINDICATIONS

- Nonunion with previous infection at nonunion site
- Previous failed grafting for the nonunion
- Bone gap greater than twice the width
- Acute fracture with significant bone loss
- Non-union issues in fracture gap
- Sign of hardware loosening
- Unstable fractures / defects

Proven technique

The combination of BMP and BBM has shown a decade of clinical experience. This protein- and stem cell-based clinical success can be replicated in a series of clinical case reports.
early intervention

Direct hospital costs to achieve union in tibia fractures have been estimated between $7415 and $27,422 (indexed to 2002 dollars). The IGNITE™ technique is a Low Morbidity, Time-savings procedure:

- Estimated cost savings potential of over $4400.1-4
- Minimally Invasive Aspiration and Injection
- Outpatient, 30-minutes OR time
- No iliac crest harvest complications and cost (estimated between $2,200 and $5,000) 5-9

REFERENCES

4. No indirect costs were included in this calculation, such as workers’ compensation, disability, and other non-hospital costs. Cost savings using IGNITE™ technique estimated using more conservative direct hospital cost ($7,415).
7. Sawin PD, Traynes VC, Menezes AH. A comparative analysis of fusion rates and donor site morbidity for autogenic rib and iliac crest bone grafts in posterior fusions.